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ARTICLE

Predicting Post-surgery Discharge Time in Pediatric
Patients Using Machine Learning

Marco Cascella a, Cosimo Guerra a, Atanas G. Atanasov b,c,d, Maria G. Calevo e,
Ornella Piazza a, Alessandro Vittori f,*, Alessandro Simonini g

a Anesthesia and Pain Medicine, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno,
Baronissi, 84081, Italy
b Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
c Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and
Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, India
d Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
e Epidemiology and Biostatistics Unit, Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
f Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Piazza S. Onofrio 4, 00165,
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g Pediatric Anesthesia and Intensive Care Unit AOU delle Marche, Salesi Children's Hospital, 60121, Ancona, Italy

Abstract

Background: Prolonged hospital stays after pediatric surgeries, such as tonsillectomy and adenoidectomy, pose sig-
nificant concerns regarding cost and patient care. Dissecting the determinants of extended hospitalization is crucial for
optimizing postoperative care and resource allocation.
Objective: This study aims to utilize machine learning (ML) techniques to predict post-surgery discharge times in

pediatric patients and identify key variables influencing hospital stays.
Methods: The study analyzed data from 423 children who underwent tonsillectomy and/or adenoidectomy at the

IRCCS Istituto Giannina Gaslini, Genoa, Italy. Variables included demographic factors, anesthesia-related details, and
postoperative events. Preprocessing involved handling missing values, detecting outliers, and converting categorical
variables to numerical classes. Univariate statistical analyses identified features correlated with discharge time. Four ML
algorithmsdRandom Forest (RF), Logistic Regression, RUSBoost, and AdaBoostdwere trained and evaluated using
stratified 10-fold cross-validation.
Results: Significant predictors of delayed discharge included postoperative nausea and vomiting (PONV), continuous

infusion of dexmedetomidine, fentanyl use, pain during discharge, and extubation time. The best-performing model,
AdaBoost, demonstrated high accuracy and reliable prediction capabilities, with strong performance metrics across all
evaluation criteria.
Conclusion: ML models can effectively predict discharge times and highlight critical factors impacting prolonged

hospitalization. These insights can enhance postoperative care strategies and resource management in pediatric surgical
settings. Future research should explore integrating these predictive models into clinical practice for real-time decision
support.

Keywords: Machine learning, Artificial intelligence, Tonsillectomy, Random forest, Postoperative nausea and vomiting

1. Introduction

E fficient management of hospital resources
is crucial for optimizing patient care and

ensuring the sustainability of healthcare systems.

Consequently, accurate prediction of discharge times
can significantly enhance hospital operations by
enabling better bed management, staffing, and
scheduling, ultimately leading to improved patient
outcomes and satisfaction [1].
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Prolonged hospital stays after pediatric surgeries
represent a significant concern, both in terms of cost
and impact on patient care. The prevalence of
extended hospitalizations varies greatly depending
on the type of chronic condition and among
different children's hospitals [2]. Multiple variables
can affect hospital length of stay [3]. For tonsillec-
tomy and adenoidectomy procedures, research
typically examines discharge times from the recov-
ery room. In this setting, common causes of pro-
longed hospitalization include younger age and
postoperative desaturation [4]. Moreover, the use of
opioids and upper respiratory infections have been
identified as potential predisposing factors [5].
Additionally, postoperative nausea and vomiting
(PONV) can also extend hospital stays [6]. On the
contrary, postoperative pain, while common in
children undergoing tonsillectomy, is a less
frequent and controversial cause of prolonged hos-
pitalization [7].
On these premises, understanding the de-

terminants of prolonged hospitalization is of para-
mount importance for optimizing postoperative care
and resource allocation. Given that multiple vari-
ables including patient-related factors as well as
surgical, anesthesia-related, and postoperative fac-
tors can contribute to extended discharge times, an
exhaustive investigation of the potential causes un-
derlying prolonged hospital stays is required. In this
context, the application of artificial intelligence and
machine learning (ML) techniques is a suitable
strategy for predicting post-surgery discharge times
more accurately [8].
One of the key advantages of using ML in

healthcare is its ability to handle large and complex
datasets. Traditional methods often rely on manual
analysis or statistical approaches, which may over-
look subtle patterns or interactions within the data.
ML algorithms, on the other hand, can automati-
cally identify relevant features and relationships,
leading to more accurate predictions. Briefly, ML
models can consider various factors such as patient
demographics, medical history, surgical procedure,
vital signs, and recovery progress to forecast the
optimal time for discharge. These models can adapt
and improve over time as they receive more data
and feedback, making them increasingly accurate
and reliable. Therefore, by leveraging patient data
and clinical variables, ML-based strategies can
provide insights into the factors influencing recov-
ery trajectories, facilitating more efficient healthcare
delivery and better patient outcomes [9,10].
The purpose of the following study is to identify

which variables determine the time of discharge and
to train a series of algorithms capable of predicting

discharge times in pediatric patients undergoing
surgical and anesthetic procedures (i.e., one-day
surgery).

2. Methods

2.1. Study population and data collection

The study population consists of 423 children who
underwent tonsillectomy and/or adenoidectomy.
The primary investigation occurred at the IRCCS
Istituto Giannina Gaslini in Genoa, Italy, with
approval from the institutional Ethics Committee
(protocol number 048/2018) [11]. This dataset en-
compasses various demographic factors such as age,
gender, weight, presence of neurocognitive issues,
other comorbidities, occurrence and type of respi-
ratory infections in the 7 days before the surgery,
obstructive sleep apnea (OSAS), anesthesia risk
(American Society of Anesthesiologists, ASA),
and medication usage. Additionally, the collection
includes anesthesia-related details including pre-
anesthesia features (drug, dosage), anesthesia
induction (drug, dosage), and maintenance (tech-
nique, drugs, dosages, fluid therapy), intraoperative
events (bradycardia, tachycardia, hypotension,
intraoperative movements), surgery duration, and
post-surgery/anesthesia emergence variables
including extubation time in minutes, occurrences
of laryngospasm, desaturation, postoperative
nausea and vomiting (PONV), and other adverse
events. In this regard, we considered bradycardia as
a heart rate (HR) decrease of more than 20% from
baseline, and tachycardia an increase of more than
20% from baseline. Hypotension is defined as a
systolic blood pressure reduction of more than 20%
from baseline, and hypertension a mean arterial
pressure increase of more than 20% from baseline.
Desaturation refers to a drop in SpO2 levels below
90% of the baseline value for over 15 seconds.
Data from the Post-Anesthesia Care Unit (PACU)

includes time to full awakening, incidents of
emergence delirium (ED), pain assessment using
the Face, Legs, Activity, Cry, Consolability Scale
(FLACC) or the Numeric Rating Scale (NRS),
bradycardia, and desaturation. Postoperative
monitoring from PACU to discharge involved
recording occurrences of PONV, pain scores, and
adherence to discharge timing (within 24 hours).
As per the primary investigation, the Pediatric
Anesthesia Emergence Delirium (PAED) tool was
employed to evaluate ED [12]. During PACU
monitoring, the PAED scale was administered
thrice at 10-minute intervals by a dedicated nurse,
with the highest PAED score among the three
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assessments considered for data collection pur-
poses. The dataset is accessible at [13].

2.2. Preprocessing and exploratory data analysis

Preprocessing, exploratory data analysis, and sta-
tistical correlation analyses were conducted using
SPSS software version 27. Initially, null values pre-
sent in the dataset were imputed as “0”, as they
represent the absence of the specific variable. Using
the Mahalanobis distance method, 27 data points
containing outliers were detected [14]. However, we
ultimately decided not to remove them, as their
exclusion caused a drop in the algorithm's perfor-
mance, indicating that they were informative for the
prediction task.
The frequencies of categorical variable classes and

basic descriptive parameters (range, mean, and
standard deviation) for numerical variables were
examined. Variables with literal classes were con-
verted to numerical classes.
A new column, representing the patient's age at

the time of surgery, was computed as the difference
between the surgery date and the birth date. The
columns related to the use of sugammadex and
ondansetron were not considered, as they were
constant.
A univariate statistical analysis was then per-

formed to examine the correlation between cate-
gorical features and discharge time using the
Chi-square test ( p < 0.05) and between continuous
features and discharge time using pointebiserial
correlation. An alpha significance level of 0.05 was
selected.
Features that were initially determined to be

correlated with discharge time were selected as
input features for the algorithm training. Subse-
quently, the presence of multicollinearity among the
selected features was explored.

2.3. Predictive modelling

The dataset was divided into a training subset
(n ¼ 283 observations) and a test subset (n ¼ 140
observations) by ensuring that the test set contained
33% of total observations. Four algorithms were
selected and optimized with a Bayesian search
optimization process, an approach that uses step-
wise Bayesian Optimization to explore the most
promising hyperparameters set in the problem
space:

� Random Forest (RF), a commonly used ML al-
gorithm that combines the output of multiple
decision tree structures to achieve a single result.

For classification tasks, the output of the RF is
the class selected by most trees [15].

� Logistic regression (LR) model. It is a multivar-
iable method for modeling the relationship be-
tween multiple independent variables and a
categorical dependent variable, widely used in
medical and clinical research [16].

� RUSBoost, an algorithm for solving the problem
of class imbalance. It combines data sampling
and boosting, providing a simple and efficient
method for improving classification perfor-
mance when training data is unbalanced [17].

� AdaBoost (adaptive boosting), an ensemble
learning algorithm that can be used for classifi-
cation or regression. It uses multiple iterations to
generate a single composite strong learner.
During each round of training, a new weak
learner is added to the ensemble, and a
weighting vector is adjusted to focus on exam-
ples that were misclassified in previous rounds.
The result is a classifier that has higher accuracy
than the classifiers of the weak learners [18].

The models were then evaluated using a stratified
10-fold cross-validation. This is a variation of clas-
sical K-fold cross-validation that ensures each fold
maintains the same proportion of observations for
each target class as the complete dataset. This
approach is especially crucial for datasets where one
class might be heavily underrepresented.
Several metrics were then used to evaluate the

algorithms’ performances [19]:

� Accuracy, defined as the ratio of correctly pre-
dicted observations to the total observations. It is
the ratio between the number of correct pre-
dictions (True Positives and True Negatives) and
the total number of predictions. This metric
gives a straightforward indication of the model's
overall correctness. If a model has high accuracy,
it means that it is making a large number of
correct predictions relative to the total number
of predictions. However, accuracy may not al-
ways be the best indicator of model perfor-
mance, especially in cases of class imbalance.
For example, in a dataset where one class is
much more frequent than the other (e.g., 95% of
instances are negative and only 5% are positive),
a model that always predicts the majority class
will have high accuracy but poor performance in
identifying the minority class. Thus, accuracy
should be considered alongside other metrics
like Precision, Recall, and the F1 Score to obtain
a more comprehensive evaluation of the model's
performance.

TRANSLATIONAL MEDICINE @ UNISA 2024;26:69e80 71



� Precision and Recall. Precision is the ratio of
correctly predicted positive observations to the
total predicted positives. High precision relates
to a low rate of false positives. Recall is the ratio
of correctly predicted positive observations to all
observations in actual class: high recall relates to
a low rate of false negatives.

� F1 Score, defined as the weighted average of
Precision and Recall. In other words, it provides
a single metric that reflects both the Precision
and Recall of a classifier, offering a compre-
hensive assessment of its performance. By
considering both false positives and false nega-
tives, the F1 Score offers a holistic perspective on
the model's ability to correctly classify instances
across all classes. Consequently, a higher F1
Score signifies a classifier that achieves a balance
between precision and recall, indicating robust
performance in identifying relevant instances
while minimizing misclassifications.

� Area Under the Receiver Operating Character-
istic Curve (AUC- ROC): The ROC curve is a
graphical representation of the contrast between
true positive rates and false positive rates at
various thresholds. The AUC represents a de-
gree of separability achieved by the model. A
higher AUC, approaching 1, value correlates
with a model better capable of distinguishing
between the positive and negative classes.

� Confusion Matrix: A confusion matrix is a table
that is often used to describe the performance of
a classification model on a set of test data for
which the true values are known. It provides
insights not just into the errors being made by a
classifier but also the types of errors that are
being made.

The selection, optimization, cross-validation, and
evaluation of the algorithm were performed in Py-
thon (version 3.10.6) using the scikit-learn package.

3. Results

3.1. Exploratory data analysis results

Frequencies of classes for categorial variables are
shown in Table 1.
Results for continuous variables are reported in

Table 2.
The average age at the time of surgery was

4.14 ± 1.45 standard deviation, with 56.5% male and
43.5% female. An amount of 31.44% had a history of
OSAS. A pre-anesthesia phase was conducted in
93.62% of the children usingmidazolam (95.5%) and/
or ketamine (95.5%). Most patients (97%) underwent

Table 1. Class frequencies for categorical variables.

Variable Frequency (class: frequency,
percentage)

Gender 0 (Male): 239, 56.5%
1 (Female): 184, 43.5%

ASA risk scale 1:211,49,9%
2: 207,48.9%
3: 5, 1.2%

Intellectual disability 0 (No): 416, 98.3%
1 (Yes): 7, 1.7%

Cardiovascular drugs 0 (No): 421, 99.5%
1 (Yes): 2, 0.5%

Neuropsychiatric therapy 0 (No): 421, 99.5%
1 (Yes): 2, 0.5%

Chronic diseases 0 (No): 402, 95%
1 (Yes): 21, 5%

Infections 7 days
preoperatively

0 (No): 380, 89.8%

1 (Yes): 43, 10.2%
Obstructive apnea syndrome 0 (No): 290, 68.6%

1 (Yes): 133, 31.4%
Preanesthesia 0 (Not administered): 396, 93.6%

1 (Administered): 27, 6.4%
Midazolam 0 (Used): 402, 95%

1 (Not used): 21, 5%
Ketamine 0 (Used): 404, 95.5%

1 (Not used): 19, 4.5%
Parents at anesthesia

induction
0 (Not present): 32, 7.6%

1 (Present): 391, 92.4%
Intravenous anesthesia

induction
0 (Not conducted): 411, 97.2%

1 (Conducted): 12, 2.8%
Inhalation anesthesia

induction
0 (Not conducted): 11, 2.6%

1 (Conducted): 412, 97.4%
Inhalation agents 0 (Not used): 11, 2.6%

1 (Used): 412, 97.4%
Dexmedetomidine contin-

uous infusion
0 (Not used): 395, 93.4%

1 (Used): 28, 6.6%
Fentanyl use 0 (No): 242, 57.2%

1 (Yes): 181, 42.8%
Clonidine use 0 (No): 297, 70.2%

1 (Yes): 126, 29.8%
Type of Anesthesia 0 (Balanced): 400, 94.6%

1 (TIVA): 23, 5.4%
Bradycardia 0 (No): 395, 93.4%

1 (Yes): 28, 6.6%
Tachycardia 0 (No): 388, 91.7%

1 (Yes): 35, 8.3%
Hypotension 0 (No): 395, 93.4%

1 (Yes): 28, 6.6%
Hypertension 0 (No): 410, 96.9%

1 (Yes): 13, 3.1%
Intraoperative movements 0 (No): 409, 96.7%

1 (Yes): 14, 3.3%
Type of electric knife 0 (Bipolar or RM bipolar):

159, 37.6%
1 (Cold): 264, 62.4%

Oxygen desaturation 0 (No): 356, 84.2%
1 (Yes): 67, 15.8%

(continued on next page)
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inhalation anesthesia. During the maintenance
phase, 49.79% and 29.79% were administered fenta-
nyl and clonidine respectively. Concerning compli-
cations, 6.62%, 8.27%, 6.62%, 3.07%, and 3.31%
developed bradycardia, tachycardia, hypotension,
hypertension, and intraoperative movements,
respectively. Upon awakening, 15.84% developed

oxygen desaturation and 16.02% laryngospasm. We
calculated that 25.77% experienced delirium and
4.97% pain. Regarding discharge time, 5.44% of pa-
tients were discharged after 24 hours.
From the univariate statistical analysis, eight var-

iables were identified as most correlated to
Discharge time (Table 3).
A significant butweaknegative association resulted

in the use of fentanyl and being discharged within 24
hours ( p < 0.001, c2 ¼ 19.382, 4 ¼ �0.214). Moreover,
there is a significant negative moderate association
between continuous infusion of dexmedetomidine
and discharge within 24 hours ( p < 0.001, c2¼ 53.459,
4 ¼ �0.355), independently of the dose used
( p ¼ 0.056) and a significant negative but negligible
association between the presence of other adverse
events and discharge within 24 hours ( p ¼ 0.001,
c2 ¼ 12.018, 4 ¼ �0.169). Additionally, there is a
strong negative association between the presence of
PONV and timely discharge within 24 hours, indi-
cating that patients experiencing PONVare less likely
to be discharged within 24 hours compared to those
who do not suffer from it ( p < 0.001, c2 ¼ 108.234,
4 ¼ �0.506). There is also a significant weak negative
association between pain and discharge within 24
hours ( p < 0.001, c2 ¼ 17.230, 4 ¼ �0.202). Moreover,
the minutes spent for extubation are significantly
correlated with being discharged later than 24 hours
( p < 0.001, r ¼ �0.312).
For patients receiving continuous dexmedetomi-

dine infusion, the odds of on-time discharge were
significantly reduced (OR ¼ 0.092, 95% CI [0.061,
0.158]), while the odds for discharge after 24 hours
were increased (OR ¼ 1.504, 95% CI [1.152, 1.964]).
Fentanyl use was associated with decreased odds of
on-time discharge (OR ¼ 0.112, 95% CI [0.101,
0.374]) and a marginal increase in odds for discharge
after 24 hours (OR ¼ 1.059, 95% CI [1.031, 1.173]).
Experiencing adverse events resulted in signifi-
cantly lower odds of on-time discharge (OR ¼ 0.161,
95% CI [0.129, 0.494]). The odds of being discharged

Table 1. (continued)

Variable Frequency (class: frequency,
percentage)

Laryngospasm 0 (No): 355, 83.9%
1 (Yes): 68, 16.1%

Other adverse events 0 (No): 413, 97.6%
1 (Yes): 10, 2.4%

Emergence of delirium 0 (No): 314, 74.2%
1 (Yes): 109, 25.8%

Delirium scale (PAED 0e10) � 0: 317, 74.9%
� 10: 19, 4.5%
� 11: 3, 0.7%
� 12: 34, 8%
� 13: 3, 0.7%
� 14: 18, 4.3%
� 15: 7, 1.7%
� 16: 10, 2.4%
� 17: 3, 0.7%
� 18: 4, 0.9%
� 19: 2, 0.5%
� 20: 3, 0.7%

Pain after surgery 0 (No): 402, 95%
1 (Yes): 20, 4.7%

Pain (FLACC) 0: 402, 95%
1: 20, 4.7%
6: 1, 0.2%

Bradycardia (in PACU) 0 (No): 399, 94.3%
1 (Yes): 24, 5.7%

Oxygen desaturation
during discharge

0 (No): 398, 94.1%

1 (Yes): 25, 5.9%
PONV 0 (No): 380, 89.8%

1 (Yes): 43, 10.2%
Pain during discharge 0 (No): 353, 83.5%

1 (Yes): 70, 16.5%
Discharge on time (24 hrs) 0 (No): 23, 5.4%

1 (Yes): 400, 94.6%

Table 2. Descriptive statistics for continuous variables.

N Minimum Maximum Mean Std. Deviation

Age 423 1 10 4.14 1.447
weight 423 9.50 40.00 18.0863 4.68258
Dexmedetomidine bolus (mcg/Kg) 423 0 2 1.23 0.941
Remifentanil dose (Kg/min) 423 0.00 0.50 0.1012 0.14,428
Rocuronium dose (mg/Kg) 423 0.3 2.0 0.579 0.1304
Dexamethasone 423 0.000 1.500 0.29,722 0.090,514
Tramadol (mg/Kg) 423 0 2 0.27 0.469
Fluid (ml/Kg) 423 6.0 25.0 15.071 3.3976
Extubation time (min) 423 0 30 3.62 2.406
Surgery duration (min) 423 4 50 19.74 7.212
Time for a complete awakening 423 5 65 26.94 10.770
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after 24 hours showed a tendency to increase,
although not statistically significant (OR ¼ 1.359,
95% CI [0.905, 2.011]). Patients reporting pain during
discharge were less likely to be discharged on time
(OR ¼ 0.216, 95% CI [0.099, 0.470]). However, there
was a notable increase in the likelihood of being
discharged after 24 hours (OR ¼ 1.146, 95% CI
[1.034, 1.270]).

The occurrence of PONV drastically reduced the
odds of on-time discharge (OR ¼ 0.040, 95% CI
[0.017, 0.096]) and significantly increased the odds of
discharge after 24 hours (OR ¼ 1.628, 95% CI [1.259,
2.078]). Oxygen desaturation at the time of discharge
decreased the likelihood of on-time discharge
(OR ¼ 0.298, 95% CI [0.110, 0.811]). The odds for
discharge beyond 24 hours showed a slight increase

Table 3. Results from correlation analysis. For the chi-square test, the correlation factor phi is shown. For pointebiserial correlation, Pearson's R-
value is shown as a correlation factor.

Variables Type p-value Type of
correlation

Correlation
Factor

Age Continuous 0.446 Point-biserial
Gender Categorical M (0)/F(1) Chi-square
ASA risk scale Continuous Point-biserial
Pain during discharge Categorical No (0), Yes (1) <0.001 Chi-square �0.202
PONV Categorical No (0), Yes (1) <0.001 Chi-square �0.506
Oxygen desaturation during discharge Categorical No (0), Yes (1) 0.016 Chi-square �0.117
Other adverse events Categorical No (0), Yes (1) <0.001 Chi-square �0.169
Fentanyl Categorical No (0), Yes (1) <0.001 Chi-square �0.214
Dexmedetomidine continuous infusion Categorical No (0), Yes (1) <0.001 Chi-square �0.355
Pain (FLACC) Continuous 0.005 Point-biserial �0.135
Extubation time Continuous 0.002 Point-biserial �0,137
Dexmedetomidine (Bolus) Continuous 0.056 Point-biserial
Administration time (induction) Continuous 0.338 Point-biserial
Remifentanil Continuous 0.483 Point-biserial
Rocuronium Continuous 0.489 Point-biserial
Dexamethasone Continuous 0.361 Point-biserial
Fluid therapy (intraoperative) Continuous 0.598 Point-biserial
Tramadol Continuous 0.192 Point-biserial
Surgery Duration Continuous 0.514 Point-biserial
Intellectual disability Categorical No (0), Yes (1) 0.522 Chi-square
Cardiovascular drug Categorical No (0), Yes (1) 0.734 Chi-square
Neuropsychiatric therapy Categorical No (0), Yes (1) 0.734 Chi-square
Chronic diseases Categorical No (0), Yes (1) 0.889 Chi-square
Infections 7 days preoperatively Categorical No (0), Yes (1) 0.639 Chi-square
Obstructive apnea syndrome Categorical No (0), Yes (1) 0.723 Chi-square
Preanesthesia Categorical No (0), Yes (1) 0.641 Chi-square
Midazolam Categorical No (0), Yes (1) 0.397 Chi-square
Ketamine Categorical No (0), Yes (1) 0.317 Chi-square
Parents at anesthesia induction Categorical No (0), Yes (1) 0.067 Chi-square
Intravenous anesthesia induction Categorical No (0), Yes (1) 0.399 Chi-square
Inhalational anesthesia induction Categorical No (0), Yes (1) 0.420 Chi-square
Type of inhalational agent sevoflurane-nitroxide Categorical 0.494 Chi-square
Clonidine dichotomy Categorical No (0), Yes (1) 0.590 Chi-square
Anesthesia Type (balanced or TIVA) Categorical No (0), Yes (1) 0.237 Chi-square
Bradycardia Categorical No (0), Yes (1) 0.652 Chi-square
Tachycardia Categorical No (0), Yes (1) 0.940 Chi-square
Hypotension Categorical No (0), Yes (1) 0.189 Chi-square
Hypertension Categorical No (0), Yes (1) 0.380 Chi-square
Intraoperative movements Categorical No (0), Yes (1) 0.775 Chi-square
Type of Electric knife Categorical No (0), Yes (1) 0.466 Chi-square
Oxygen desaturation Categorical No (0), Yes (1) 0..834 Chi-square
Laryngospasm Categorical No (0), Yes (1) 0.860 Chi-square
Emergence Delirium Categorical No (0), Yes (1) 0.650 Chi-square
Pain Categorical No (0), Yes (1) 0.530 Chi-square
Bradycardia Categorical No (0), Yes (1) 0.519 Chi-square
Delirium (PAED scale) Continuous 0.525 Point-biserial
Pain (FLACC) Continuous 0.294 Point-biserial

74 TRANSLATIONAL MEDICINE @ UNISA 2024;26:69e80



but were not conclusively significant (OR ¼ 1.134,
95% CI [0.954, 1.347]).
To ensure the absence of multicollinearity be-

tween predictor features, the variance inflation fac-
tor (VIF) has been calculated. Two highly correlated
features (VIF >5) were found (Table 4).

3.2. Predictive modeling results

The performance metrics of the ML models are
summarized in Table 5.

The AdaBoost algorithm outperformances the
other models in at least 3 out of the total 6 metrics
measured; in particular, it exhibits a higher ROC-
AUC, demonstrating that, on average, the algorithm
efficiently distinguishes between the two classes
and accurately classifies them in most cases (Fig. 1).
The aggregated confusion matrices were calcu-

lated by summing the true positives, true negatives,
false positives, and false negatives across each fold.
Examination of these matrices reveals that AdaBoost
accurately predicted 376 out of 400 instances of
discharges occurring within 24 hours, and correctly
identified 21 instances as not occurring within 24
hours. Additionally, there were only 2 false positives
and 23 false negatives noted (Fig. 2).
Subsequently, we examined the importance of the

various features across the models. Feature impor-
tance for the ensemble learning models (AdaBoost,
RF, RusBoost) was obtained using the feature_
importances_ attribute. For the LR model, we
calculated the average importance based on the
absolute values of the weights of each feature

Table 4. VIF analysis of input features.

Feature Variance Inflation Factor

Pain During Discharge 6.976561
PONV 1.586723
Dex continuous infusion 1.582372
Extubation time min 3.206748
Fentanyl use 2.169976
Pain (FLACC) 6.740975
Oxygen desaturation 1.256870
Other adverse events 1.127327

Table 5. Performance metrics measured across all the cross-validation folds.

Precision Recall F1 score ROC-AUC PR-AUC Accuracy

Random Forest 0.9924 0.9450 0.9662 0.8690 0.9886 0.9408
Logistic Regression 0.9976 0.8725 0.9222 0.9065 0.9914 0.8777
RUSBoost 0.9951 0.9000 0.9422 0.8746 0.9882 0.9014
AdaBoost 0.9948 0.9425 0.9641 0.9250 0.9951 0.9413

Abbreviation: Area Under the Receiver Operating Characteristic Curve (AUC- ROC), Precision-recall- Area Under the Receiver
Operating Characteristic Curve (PR-AUC).

Fig. 1. ROC curves for the four algorithms including the single AUC values for each fold.
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derived from the trained model. Feature impor-
tances are shown in Fig. 3 and Table 6.
In the RF model, PONV emerged as the most

critical feature with an importance score of 0.39,
indicating its substantial impact on discharge pre-
diction. Fentanyl use and Extubation time also had
high importance scores of 0.21 and 0.20, respec-
tively, reflecting their significant roles in predicting
discharge times. Pain during discharge and oxygen
desaturation (as a dichotomy), with importance
scores of 0.11 and 0.03 respectively, were less
influential but still notable.
The AdaBoost model highlighted extubation time

as the most important feature with an importance
score of 0.42, suggesting that AdaBoost is particu-
larly sensitive to this variable. PONV and fentanyl
use were also important, with scores of 0.12 and 0.17
respectively, though to a lesser extent compared to
RF. The importance of pain during discharge and
oxygen desaturation dichotomy in AdaBoost was
similar to their importance in the RF model, with
scores of 0.14 and 0.08 respectively.
In the RusBoost model, PONV once again ranked

highest with an importance score of 0.40, consistent
with its critical role across models. Dexmedetomi-
dine continuous infusion and fentanyl use had
considerable importance, with scores of 0.21 and
0.12 respectively, highlighting their relevance in this
model. Pain during discharge and oxygen desatu-
ration showed varied levels of influence, with scores
of 0.09 and 0.0 respectively.

The LR model also highlighted PONV as the most
important feature, with a notably high average
importance score. Pain during discharge, fentanyl
use, and dexmedetomidine continuous infusionwere
also significant, reflecting their strong associations
with discharge times. Oxygen desaturation di-
chotomy and extubation time had moderate impor-
tance, indicating their roles in the model, albeit less
prominent compared to the ensemble models.

4. Discussion

Discharge time is a critical factor in the process of
one-day surgery. In this study, 5.44% of the children
were discharged after 24 hours, thus experiencing a
longer hospital stay. Of these children, 73.9%
exhibited the onset of PONV, 43.5% were under
continuous dexmedetomidine infusion, 47.8%
manifested pain during the discharge process, and
13% developed other side effects. Additionally, 87%
received fentanyl during the maintenance phase of
anesthesia.
The univariate analysis showed that children who

received intraoperative fentanyl were less likely to
be discharged on schedule compared to those who
did not use that opioid. Moreover, patients who
experienced pain or PONV were less likely to be
discharged within the expected timeframe
compared to those without pain. This result con-
firms that pain management has a significant impact
on the discharge process [20e22].

Fig. 2. Aggregated confusion matrices of the four algorithms. 0: Discharge after 24 hours, 1: Discharge in 24 hours.
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The onset of PONV has been identified in various
studies as one of the main factors contributing to a
significant percentage of unplanned readmissions
after surgery, along with the onset of side effects
induced by the use of anesthetics. PONV is one of

the main side effects of general anesthesia. This
complication affects patient satisfaction, increases
time-to-discharge from the PACU or hospital, and
may even be present after discharge from the hos-
pital, leading to rehospitalization [23]. PONV is a

Fig. 3. Bar plots representing the features' importance. A ¼ Ensemble models; B ¼ Logistic Regressor. Abbreviation: RF, Random Forest.

Table 6. Feature importance scores.

Random Forest AdaBoost RusBoost Logistic Regression

PONV 0.39 0.12 0.40 1.66
Dexmedetomidine infusion 0.04 0.06 0.21 0.75
Extubation time min 0.20 0.42 0.14 0.09
Fentanyl use 0.21 0.17 0.12 0.90
Pain During Discharge 0.11 0.14 0.09 1.08
Other adverse events 0.01 0.0 0.01 0.03
Oxygen desaturation (dichotomy) 0.03 0.08 0.0 0.26
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common complication following surgical proced-
ures, influenced by several risk factors, many of
which are inherent and not modifiable. Not modi-
fiable factors contributing to PONV include gender,
history of PONV or motion sickness, age, and type
of surgery [24]. Nevertheless, in the realm of anes-
thesia and postoperative care, some risk factors can
be adjusted to minimize the risk of PONV [25]. A
critical review of the literature and practice reveals
that the management of intra-operative opioids,
specifically fentanyl, plays a significant role in
PONV outcomes. The research highlighted that an
opioid-free total intravenous anesthesia (TIVA)
approach, which utilizes drugs such as propofol,
ketamine, and dexmedetomidine instead of tradi-
tional opioids and volatile anesthetics, significantly
reduced the incidence and severity of PONV [26].
Further studies have explored the specific impact of
fentanyl when used intra-operatively. The results
were striking, with the fentanyl group experiencing
a higher demand for postoperative analgesia and a
significantly greater incidence of PONV requiring
medical intervention [27,28]. In our analysis, we
found that, among the children administered fen-
tanyl during the maintenance phase of anesthesia,
16.6% exhibited PONV in the transition from the
PACU to discharge.
Dexmedetomidine is a useful anesthetic adjunct,

increasingly popular during pediatric surgery and
procedural sedation [29]. Notably, in our study, the
infusion of dexmedetomidine was correlated with a
longer hospital stay. This is in contrast with meta-
analysis indicating that this medication reduced
postoperative pain and postoperative complications
such as delirium and desaturation [30]. However,
other studies support our findings. For instance,West
et al. [31] found evidence of a slight association be-
tween intraoperative dexmedetomidine and the
duration of recovery from propofol anesthesia in
children.They identifiedapotential dose relationship,
indicating approximately a 15-minute delay in re-
covery for each mg/kg of dexmedetomidine adminis-
tered. Given this uncertainty, further research on the
effects of dexmedetomidine in pediatric anesthesia
should better explore this relationship.
Concerning the ML-based predictive modeling,

four classification algorithms were selected and
evaluated individually, and after cross-validation,
the model with the best performance based on the
metrics used (ROC- AUC, Precision-recall curve,
precision, recall, accuracy, F1-score) was chosen.
Our investigations demonstrated that utilizing an
AdaBoost classifier enables accurate and precise
classification of pediatric patients' discharge times

based on seven significant features. Briefly, the ML
analysis demonstrates that PONV, extubation time,
fentanyl use, and pain during discharge are the
most influential features across the models. Impor-
tantly, each model provided a unique perspective
on feature importance due to their different un-
derlying algorithms and sensitivity to various pre-
dictors as ensemble models like RF, AdaBoost, and
RusBoost tend to capture complex interactions be-
tween features, while LR highlights linear relation-
ships. Overall, although the RF model showed
better recall and F1 Score, the AdaBoost model
demonstrated superior predictive capabilities with
high accuracy, and AUC-ROC values, indicating
robust performance across various evaluation
criteria. The model's confusion matrix further
confirmed its reliability, with a high number of true
positives and true negatives. This may be attributed
to its ensemble nature, which allows the algorithm
to effectively leverage multiple weak learners, build
a robust predictive model, and capture complex
relationships within the data [32].
The descriptive analysis and ML analysis in this

study are closely aligned because they both utilize
the same data and variables, with descriptive anal-
ysis providing foundational insights that guide and
validate the ML models. This alignment ensures
that the models are both accurate and interpretable,
ultimately supporting better clinical outcomes. In
other words, while both descriptive and ML ana-
lyses focus on the same data and variables, they
offer distinct interpretative perspectives. Descriptive
analysis provides foundational insights, outlining
patterns and associations within the dataset, while
ML analysis leverages these insights to predict
outcomes and patterns unseen in the data. Conse-
quently, while their shared focus on variables like
PONV, fentanyl use, and pain during discharge, the
interpretation of results differs; descriptive analysis
elucidates current trends, while ML analysis fore-
casts future scenarios [33]. This underscores the
complementary nature of these analytical ap-
proaches, which together provide comprehensive
insights for improving clinical practice and patient
outcomes [34,35]. Future research should focus on
integrating these predictive models into clinical
practice and exploring their impact on patient out-
comes and healthcare efficiency. Nevertheless,
integrating these predictive models into real-time
clinical workflows presents challenges, including
the need for seamless integration with electronic
health records (EHR), user-friendly interfaces for
clinicians, and continuous model updating and
validation.
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4.1. Study limitations

The relatively small and geographically limited
sample size may not be representative of broader
pediatric populations undergoing tonsillectomy and
adenoidectomy in different regions or healthcare
settings. Therefore, the findings might not be
generalizable to all pediatric patients or other types
of surgeries. Moreover, the study focused on specific
variables related to demographic factors, anesthesia
details, and postoperative events. Other potentially
relevant factors, such as socioeconomic status,
family history, or environmental influences, were
not considered and could affect discharge times.
There was a significant imbalance in some of the

categorical variables, such as intellectual disability
and cardiovascular drug usage, with very few cases
in certain categories. This imbalance could affect the
performance and robustness of the ML models,
particularly in identifying predictors from under-
represented groups. Several methodological ap-
proaches can be applied to overcome this issue. For
example, this could involve using techniques such as
the synthetic minority over-sampling technique
(SMOTE) to ensure the ML models are not biased
towards the majority class [36]. Finally, the main
limitations in the applicability of the model in a
clinical setting are related to the relatively low
number of general observations and the few in-
stances of children who were discharged after 24
hours (5.75%). More data and additional studies will
be needed to corroborate the reliability of this model.

5. Conclusions

Predicting postoperative discharge time is a critical
factor in optimizing the post-surgery care process
and reducing the economic and healthcare costs
associated with unexpected extended hospital stays.
By implementing ML models, it may be possible to
predict whether patients will be discharged within or
after 24 hours by identifying modifiable risk factors.
Key factors, such as fentanyl use, the occurrence of
PONV, and pain during the discharge period,
strongly correlate with extended discharge times.
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